

43° Congreso de Ergonomía, Higiene, Medicina y Seguridad Ocupacional.

Forum UPB, Medellín - Colombia 1, 2 y 3 de noviembre de 2023

Somos prevención, bienestar y vida

Comparación de umbrales auditivos entre trabajadores expuestos a ruido y solventes.

Organiza:

Dra. Ana María Salazar Bugueño anasalazar@uchile.cl

- Estado del arte
- Hipótesis
- **Objetivos**
- Metodología
- Resultados
- **Conclusiones**

¿Qué sabemos?

- NIHL: grave *problema de salud pública* en todo el mundo (Basner et al.2014)
- Aproximadamente el 16 % de la pérdida auditiva en adultos a nivel mundial se atribuye a exposición a ruido en el lugar de trabajo (Beyan et al. 2016)
- La NIHL ocupacional es una de las enfermedades profesionales más comunes en el mundo, y más del 10% de los trabajadores de los países desarrollados la padecen (Zhou et al. 2020).
- Existen evidencias de que los disolventes orgánicos pueden tener efectos adversos sobre la audición (Barregård y Axelsson 1984; Chang et al. 2006)

¿Qué sabemos?

- ➤ Golmohammadi et al., identificaron 16 factores de riesgo que pueden exacerbar la pérdida auditiva inducida por el ruido ocupacional, incluidos los solventes (Golmohammadi y Darvishi 2019)
- El Instituto Nacional de Seguridad y Salud Ocupacional de EE. UU. (NIOSH) ha incluído los <u>disolventes como sustancias químicas</u> <u>ototóxicas</u> (NIOSH 2021).
- Los TLVs del año 2023 consideran al tolueno y al xileno como sustacias químicas ototóxicas.
- No existe información referente a que si la pérdida auditiva originada por la exposición a solventes tiene la mismas características audiométricas que la originada por exposición a ruido.

- **Estado del arte**
- **Hipótesis**
- **Objetivos**
- Metodología
- Resultados
- **Conclusiones**

Hipótesis

H₀: Los perfiles audiométricos de trabajadores expuestos solo a ruido son diferentes al de los de trabajadores expuestos solo a solventes.

H₁: Los perfiles audiométricos de trabajadores expuestos solo a ruido no son diferentes al de los de trabajadores expuestos solo a solventes

- Estado del arte
- **Hipótesis**
- **Objetivos**
- Metodología
- Resultados
- **Conclusiones**

Objetivos

<u>General</u>

Comparar los umbrales auditivos entre trabajadores expuestos solo a ruido y solo a solventes.

Específicos

- Caracterizar la muestra por edad, experiencia laboral, daño auditivo y diagnóstico médico
- Determinar los perfiles audiométricos de los trabajadores expuesto solo a ruido y solo a solventes
- Comparar los umbrales audiométricos entre ambos grupo de trabajadores

- Estado del arte
- **Hipótesis**
- **Objetivos**
- > Metodología
- Resultados
- **Conclusiones**

Metodología

<u>Diseño</u>: Estudio de tipo no experimental, descriptivo, comparativo.

Muestra: 40 trabajadores expuestos solo a ruido (N= 88 oídos) y 40 trabajadores expuestos solo a solventes (N= 88 oídos).

Criterios de inclusión:

- Trabajadores con CAE permeable y sano (sin tapón de cerumen, cuerpos extraños, ni irritación).
- Trabajadores solo expuestos a NPS_{eq 8h} igual o superior a 85 dBA
- Trabajadores solo expuestos a solventes.
- No presentar hipoacusia de conducción o sensorioneural de etiología no ocupacional conocida.
- Trabajadores de la industria del cuero, calzado y muebles (tolueno, xileno, MEC, MIBC).

Metodología

Criterios de exclusión:

- Uso de drogas ototóxicas (gentamicina, kanamicina, estreptomicina)
- Servicio militar, exposición no ocupacional a ruido (uso arma de fuego, caza, música, uso equipos de audio, entre otras)
- TEC
- Operación oído

Procedimiento.

- Otoscopía previa
- Historia Ocupacional
- Ficha epidemiológica

Variables del estudio:

Variable dependiente: umbral auditivo Variables independiente: tipo de exposición (ruido o solvente)

Metodología

Materiales:

- Audiómetro clínico modelo AC40 marca Interacoustics con certificado de calibración vigente.
- Cámara silente (ruido fondo entre Curvas NCB 25 40 dB).

<u>Análisis de datos:</u> base datos, análisis de la base (datos outliner), análisis uni y bivariado. Software Stata 13.0.

Aspectos Éticos: Aprobado por el Comité de Ética de Investigación de Seres Humanos de la Facultad de Medicina de la Universidad de Chile

- Estado del arte
- **Hipótesis**
- **Objetivos**
- Metodología
- Resultados
- **Conclusiones**

Tabla 1: Distribución de la muestra según tipo de exposición.

Variable	TER	TES	р
Edad (años) N=44	33,14 ± 10,96	33,57 ± 10,65	<0,05
Experiencia laboral (años) N=44	12,64 ± 10,41	13,95 ± 10,4	<0,05

Fuente. Elaboración propia.

Tabla 2: Situación Auditiva⁽¹⁾, Diagnóstico Médico⁽²⁾ y Diagnóstico Médico Legal⁽³⁾ según tipo de exposición.

Variable	TER	TES	р	
Situación auditiva (N= 88)				
Audición normal (N=77)	38 (43,2%)	39 (44,3%)		
Con daño auditivo (N=11)	6 (6,8%)	5 (5,7%)		
Diagnóstico médico				
Normal	24 (24,7%)	26 (29,5%)	40.0F	
HSN	20 (22,7%)	18 (20,5%)	<0,05	
Diagnóstico Médico Legal (N=38)				
HSN Leve	14 (36,9%)	13 (34,2%)		
HSN Moderada	5 (13,2%)	4 (10,5%)	<0,05	
HSN Severa	1 (2,6%)	1 (2,6%)		

Notas:

- (1): *Audición normal o sin daño auditivo* cuando el promedio audición de las frecuencias 1, 2, 3, 4 y 6KHz es igual o inferior a 25 dB. *Audición con daño auditivo*, cuando el promedio de audición de las frecuencias 1, 2, 3, 4 y 6Kz es superior a 25 dB.
- (2): **Audición normal:** ningún umbral es mayor a 25 dB en las frecuencias de 1 a 6 KHz. **HSL:** umbral es mayor a 25 dB en las frecuencias de 1 a 6 KHz.
- (3): *HSN Leve:* Incapacidad permanente <0%. *HSL Moderada*: Incapacidad permanente <0% < 15%. *HSN Severa:* Incapacidad Permanente ≥15%.

Tabla 3: Umbrales auditivo promedio de trabajadores según frecuencia y tipo de exposición

Frecuencia	TER (N=88)	TES (N=88)
(Hz)	(dB)	(dB)
125	18,07 (±5,79)	22,56 (±9,74)
250	15,97 (±5,86)	20,40 (±10,75)
500	13,86 (±5,45)	18,01 (±10,16)
1000	13,75 (±7,12)	15,40 (±7,99)
2000	11,70 (±8,02)	12,90 (±7,30)
3000	15,28 (±11,83)	14,26 (±9,90)
4000	19,09 (±14,05)	16,31 (±12,81)
6000	24,72 (±11,78)	(24,89 ±12,10)
8000	15,74 (±9,58)	18,98 (±14,47)

Nota:

TER: Trabajadores expuestos a ruido

TES: Trabajadores expuestos a solventes

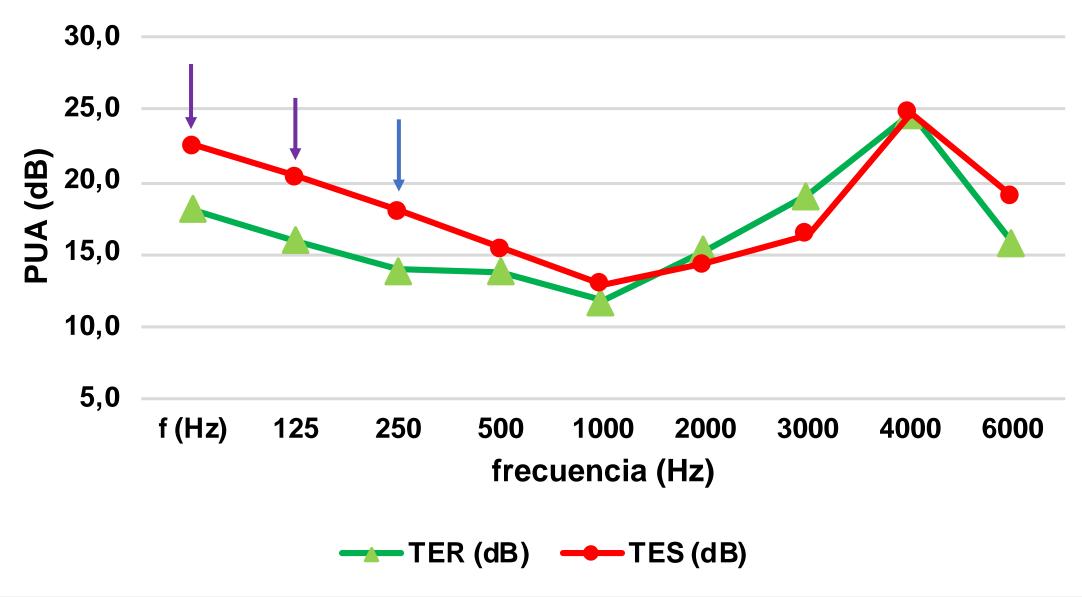


Tabla 4: Comparación de umbrales auditivo según frecuencia y tipo de exposición

Frecuencia (Hz)	TER (N=88) (dB)	TES (N=88) (dB)	р
125	18,07 (±5,79)	22,56 (±9,74)	>0,05
250	15,97 (±5,86)	20,40 (±10,75)	>0,05
500	13,86 (±5,45)	18,01 (±10,16)	>0,05
1000	13,75 (±7,12)	15,40 (±7,99)	<0,05
2000	11,70 (±8,02)	12,90 (±7,30)	<0,05
3000	15,28 (±11,83)	14,26 (±9,90)	<0,05
4000	19,09 (±14,05)	16,31 (±12,81)	<0,05
6000	24,72 (±11,78)	(24,89 ±12,10)	<0,05
8000	15,74 (±9,58)	18,98 (±14,47)	<0,05

Nota:

TER: Trabajadores expuestos a ruido

TES: Trabajadores expuestos a solventes

- Estado del arte
- Hipótesis
- **Objetivos**
- Metodología
- Resultados
- Conclusiones

Conclusiones

- 1. El perfil de los <u>umbrales auditivos</u> en ambos grupos sigue un comportamiento <u>similar</u>, en las frecuencias medias y altas.
- 2. <u>No existen diferencias</u> en los umbrales auditivos entre ambos grupos en el rango de <u>frecuencias de 1 a 8 KHz</u> (p<0.05).
- 3. <u>Existen diferencias</u> en los umbrales auditivos entre ambos grupos en las <u>frecuencias de 125, 250 y 500Hz</u> (p>0.05).

Conclusiones

- 4. Dado que para el <u>calculo de daño auditivo</u> el marco legal chileno actual <u>no considera las frecuencias de 125, 250 y 500 Hz</u>, se estaría <u>perjudicando</u> a los trabajadores expuestos a solventes, en cuanto a la <u>real determinación de su daño</u> auditivo y posterior <u>calculo de incapacidad</u>.
- 5. Teniendo en consideración que NIOSH a contar del año 2021 ha incluido a los solventes como sustancias químicas ototóxicas, es necesario que los profesionales de HO y SO definan en forma objetiva que frecuencias se deben considerar para calcular el daño auditivo a la luz del conocimiento actual.

El ruido es relativo al silencio que lo precede. Cuanto más absoluto es el silencio, más espantoso es el trueno.

43° Congreso de Ergonomía, Higiene, Medicina y Seguridad Ocupacional.

Forum UPB, Medellín - Colombia 1, 2 y 3 de noviembre de 2023

Somos prevención, bienestar y vida

Comparación de umbrales auditivos entre trabajadores expuestos a ruido y solventes.

Organiza:

Dra. Ana María Salazar Bugueño anasalazar@uchile.cl

